

Analyses of added value for heavy rain fall and strong wind in convection-permitting climate simulations over

Germany

Deutscher Wetterdienst (DWD),
Germany

CLM Assembly 21 Sept 2022

Model data of DWD in Network of Experts

- Convection-permitting Simulations with COSMO-CLM5-0-16
 - → 3 km grid, centred over Central Europe
 - Configuration taken from FPS-convection/CLMcom: only shallow convection parameterization, prognostic graupel
 - → **Projection run** driven by MIROC-MIROC5, Intermediate nest on 12 km with COSMO-CLM4-8-17
 - → Time range 1971-2000 (historical), and 2031-2060, 2071-2100 (RCP8.5)
 - → Evaluation run, driven by ERA40/ERA5 reanalysis for 1971-2019, 2020+2021 in prep.
 - → Hourly output (tas, sfcWind, huss ...), 5-minute-data for precipitation
- Reference data:

HYRAS (version 2015a, Rauthe et al. 2013; Razafimaharo et al. 2020)

- 1951-2015, daily data
- https://www.dwd.de/DE/leistungen/hyras/hyras.html

COSMO-REA6 (Bollmeyer et al. 2015)

- 1995-2015, daily data
- https://www.dwd.de/DE/klimaumwelt/klimaueberwachung/reanalyse/reanalyse_node.html

RADKLIM (version 2017.002, Winterrath et al. 2018):

- Gridded radar observations for Germany, calibrated with station gauges
- www.dwd.de/radklim

Model data of DWD in Network of Experts

- Convection-permitting Simulations with COSMO-CLM5-0-16
 - 3 km grid, centred over Central Europe
 - Configuration taken from FPS-convection/CLMcom: only shallow convection parameterization, prognostic graupel

 - Projections and Evaluation run available on ESGF: https://esgf.dwd.de/projects/dwd-cps/

- https://www.awo.de/DE/leistungen/hyras/hyras.html

COSMO-REA6 (Bollmeyer et al. 2015)

- 1995-2015, daily data
- https://www.dwd.de/DE/klimaumwelt/klimaueberwachung/reanalyse/reanalyse_node.html

RADKLIM (version 2017.002, Winterrath et al. 2018):

- Gridded radar observations for Germany, calibrated with station gauges
- www.dwd.de/radklim

Analytics of COSMO-CLM model simulations

- Evaluation of COSMO-CLM evaluation simulation:
 - Reference data HYRAS (precipitation) and COSMO-REA6 (wind)
- Analysis of (extreme) precipitation:
 - Added Value of high model resolution
 - Peak-over-threshold (PoT) analysis
 - Analyses for Germany and for several regions
- Analysis of changing winds and wind gusts

Model evaluation: Precipitation

COSMO-CLM Eval-Simulation: Comparison to HYRAS data for period 1971-2000

- Good correspondence between COSMO-CLM and HYRAS except overestimation in the North-West and in mountainous areas
- Pearson Correlation coefficient ranges between 0.4 and 0.65

Model evaluation: Precipitation

Annual cycle 1971-2015

- Good correspondence between COSMO-CLM and HYRAS
- Small shift in annual cycle seen for summer months
- COSMO-CLM overestimation in winter, underestimation in summer

COSMO-CLM Eval-Simulation:

Time series comparison to HYRAS data

Model evaluation: Wind

COSMO-CLM
Eval-Simulation:
Comparison to
COSMO-REA6
data for period
1995-2015

- Good correspondence between COSMO-CLM and COSMO-REA6
 - Except the North-West part where differences > 0.75 m/s
- Very high correlation coefficient (> 0.9 in most areas)

Model evaluation: Wind

Annual cycle 1995-2018

- Good correspondence of annual cycle and long-term annual means
 - Systematic shift of ≈ 0.3-0.4 m/s

Annual means 1971-2019

Analyses of hourly and daily precipitation

→ Hourly data:

- → Mean diurnal cycle of precipitation
 - → for different seasons and different regions
- Mean intensity and wet hours
- → Peak-over-threshold method
- Reference data: RADKLIM

Diurnal cycle of precipitation

Diurnal cycle for **year** (Jan-Dec)

- Good correspondence between COSMO-CLM and RADKLIM, except night-time precipitation
- Strong overestimation of ERA5 precipitation over the day

Domain: **Germany**

Time range: 2001-2015

Diurnal cycle of precipitation

- Differences show better performance of COSMO-CLM for all regions
- Strong overestimation of precipitation at noon by ERA5
- Differences of COSMO-CLM vary for different regions

Precipitation intensity and wet hours

- Good performance of COSMO-CLM, small shift in diurnal cycle
- Strong underestimation of ERA5, but diurnal cycle of intensity is present in both model data. Wet hours are too high in ERA5, especially around noon

Diurnal cycle of precipitation: intensity

- Differences in intensity most pronounced for region 3 & 7 for COSMO-CLM
- For ERA5 differences are negative in all regions and all months

PoT-method application to extreme precipitation

- Good correspondence in Northern Germany
- Strong overestimation (30-50%) in mountainous areas / Southern Germany

Rybka et al. 2022, submitted

Short durations (D=3h / 1h; T=30a)

Rybka et al. 2022, submitted

- Model overestimation of short durations (mind the scale!)
- Overestimation of orographic dependance of extreme precipitation

Wind analyses

- → Do the time series differ and is the difference significant?
- Mann-Whitney-u-Test:
 - → Significance at p-Value < 0.05</p>
 - → historical / near future: p=0.68
 - → historical / far future: p=4.867e-06
- → Similar results also for wind gusts: significant changes in the far future for wind and wind gusts

Wind analyses: annual cycle differences

sfcWind annual cycle of 30 years

wsgsmax annual cycle of 30 years

- Aggregating the analyses from 12 to 3 regions:
 - Decreasing wind and wind gusts in nearly all months, especially in spring
 - Visible in all three regions

Conclusion & Outlook

- COSMO-CLM Simulations with 3km grid resolution for 30-year periods
 - → CMORized and published on ESGF:
 https://esgf.dwd.de/projects/dwd-cps/
 - Data evaluation for core variables temperature, precipitation and wind
- Precipitation: Good correspondence to reference data
 - Positive added value in comparison to coarse reanalysis data
 - **→** ...but
 - Overestimation of very extreme precipitation and its orographic patterns on short time intervals (1-3h)
- Wind/ wind gusts: good correspondence to reference data (reanalyses)
 - Comparisons to station data are planned
 - → Slight but significant decrease of mean winds for far future (2071-2100), more work needed!

