

Definition: Infrastructure Resilience

 European Committee for Standardization (CEN)

"The ability of a system, community or society exposed to hazards to resist, absorb, accommodate and recover from the effects of a hazard in a timely and efficient manner, including through the preservation and restoration of its essential basic structures and functions"

 United Nations Office for Disaster Risk Reduction (UNDRR)

Definition: Infrastructure Resilience

Time

Motivation and Research Question

- Complete picture of resilience: absorption and recovery
- Previous studies focused on absorption, i.e. operational or economic damage to the rail system.
 - Chan and Schofer 2016; Kellerman et al. 2016; Xu, et al. 2016
- The few studies on recovery focus on specific disaster events.
 - Janic 2018; Bhatia, et al. 2015; Yadav, et al. 2020
 - → Weak external validity

How long does it take on average for traffic to recover after a natural hazard disruption?

Data: German Railway

Source: DB Netz AG

Disruption data

- Floods and tree-fall events along the railway network of the Deutsche Bahn (DB)
- Date of disruption, route, location or operating point, disruption duration

Spatially and temporally linked with route segments

Train traffic data

- Daily traffic information for all railway segments of the DB network
- Number of freight and passenger trains between two operating points

Normalized with segment-specific means and standard deviations

Removed weekly or seasonal fluctuations

Residual Traffic (RT_{it})

Identical Timeframe:

25 Jan 2018 – 31 Dec 2020

Resilience Curve Estimation

For each disruption type $d \in (tree \ fall, flood)$ and day $t \in (-7, +14)$ around the disruption, we calculate the mean residual traffic, MRT, as

$$MRT_t^d = \frac{\sum_{i=1}^{N_t^a} RT_{it}}{N_t^d}$$

where

 RT_{it} = residual traffic of event *i* on day *t*, and

 N_t^d = the total number of events for disruption type d on day t.

- Service level: MRT (in standard deviations)
- Unit of time: Days

Estimated Resilience Curves

Tree Fall Events and Floods

Thank you!

- Traconference
- Transport Research Arena (TRA)
- @TRA_Conference
- traconference2022
- TRAconference

traconference.eu

HOSTED AND ORGANISED BY:

CO-ORGANISED BY

IN COOPERATION WITH:

TOGETHER WITH:

